MAG: Measuring the heliospheric magnetic field

solar orbiter

Tim Horbury, Imperial College London

Solar Orbiter magnetometer: requirements

Time resolution

- Bulk plasma: 16 vector/s
- Kinetic physics: 128 vectors/s burst

Low noise

- Order of magnitude below natural signal throughout the orbit
- 10 pT Hz^{-1/2} at 1 Hz

Absolute field

- Calibration: two sensors
- Low and stable spacecraft and instrument magnetic fields

Solar Orbiter magnetometer: configuration

Solar Orbiter magnetometer: challenges

- Thermal
 - +80C to -190C on boom
- Mechanical
 - High vibration levels on launch
- Resources
 - Mass, power, telemetry
- Software
 - Reliability, low resource processor
- Magnetic cleanliness
 - Other instruments
 - Spacecraft sub-systems

Solar Orbiter magnetometer: operational philosophy

- Always on
 - Vital to have 100% coverage
- Auto-ranging
 - Maximise precision as field magnitude varies
- Burst mode
 - 16 vectors/s most of the time: MHD, proton gyroscale
 - Burst mode: 128 vectors/s, ~ 1 hour per day
 - Trigger off RPW shock detection algorithm
 - Internal shock trigger (TBD)
- Low latency data
 - 1 vector every 8s within 24 hours
- Real time onboard data
 - To SWA for reduced data products

Solar Orbiter magnetometer: status

- Electrical model: final twiddles
 - Expect delivery to Airbus DS in November
- Sensors
 - Failed vibration test
 - Understand the issue, fixed
 - New test soon, expect to pass
- Software
 - · Lots still to do
- Next
 - Qualification model
 - Final(!) electrical fixes
 - Near-identical to flight model
- Flight model
 - Delivery December 2015

